<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>INSTALLATION OF BIORETENTION</td>
<td>2</td>
</tr>
<tr>
<td>SOILS</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>4</td>
</tr>
</tbody>
</table>
INTRODUCTION

Recently the San Francisco Bay Regional Water Quality Control Board issued the Municipal Regional Stormwater Permit. The Bay Area Stormwater Management Agencies Association (BASMAA) engaged WRA to provide guidance and specification for bioretention soils to assist stormwater agencies at the associated municipalities in meeting the requirements of the permit.

This report provides guidance for the installation of bioretention soils with the goal of preserving the integrity of the soil media to support a long-term infiltration rate of 5 to 10 inches per hour, provide stormwater treatment and support plant health.

INSTALLATION OF BIORETENTION SOILS

The following section provides considerations for proper bioretention soil installation.

Prior to Installing Bioretention Soil:

- Is the contractor familiar with constructing bioretention systems?
- Plan how inspections will be handled as part of the construction process.
- Verify soil meets specification prior to delivering and or placing in the facility.
- Prevent over-compaction of native soils in the area of the basin. Delineate the facility area and keep construction traffic off. Protect soils with fencing, plywood, etc.
- Provide erosion control in the contributing drainage areas of the facility. Stabilize upslope areas.
- Facilities should not be used as sediment control facilities.
- Drainage should be directed away from bioretention facilities until upslope areas are stabilized, if possible. The concentration of fines could prevent post-construction infiltration.
- If drainage is to be allowed through the facility during construction, leave or backfill at least 6” above the final grade. Temporarily cover the underdrain with plastic or fabric. Line or mulch the facility.
- Ideally, bioretention facilities should remain outside the limit of disturbance until construction of the bioretention begins to prevent soil compaction by heavy equipment. Protect bioretention areas with silt fence or construction fencing.
- Verify installation of underdrain is correct prior to placing soil.

Soil Mixing and Placement:

- Do not excavate, place soils, or amend soils during wet or saturated conditions.
- Operate equipment adjacent to (not in) the facility.
- If machinery must operate in the facility, use light weight, low ground-contact pressure equipment.
• It may be necessary to rip or scarify the bottom soils to promote greater infiltration or excavate any sediment that may have built up during construction.

• Consider the time of year and site working area when determining whether to mix bioretention soil on-site or to import pre-mixed soil.

• If mixing bioretention media onsite, use an adjacent impervious area or on plastic sheeting.

• Place soil in 12” lifts with machinery adjacent to the facility. If working within the facility, to avoid over-compacting, place first lifts at far end from entrance and place backwards toward entrance.

• Do not place or work bioretention soil if it is saturated or raining

• Allow bioretention soil lifts to settle naturally, boot pack (walk around to firm) lifts to achieve 85% compaction effort. After all lifts are placed, wait a few days to check for settlement, and add additional media as needed.

• An alternative to boot compaction is to settle bioretention soils by lightly watering until soils are just saturated. Allow soil to dry between lifts. It may take a day or more to dry adequately between lifts. Soil cannot be worked when saturated so this method should be used with caution. Allow for extra time to let soils dry between each lift. After all lifts are placed, wait a few days to check for settlement, and add additional media as needed.

• Verify bioretention soil elevations before applying mulch or installing plants.

Other Considerations:

• Protect adjacent trees.

• Protect adjacent infiltration systems including swales, soils and porous pavement from sediment.
REFERENCES


